
礼貌的邮件回复,传达必要信息,同时保持专业通信中应有的礼仪。英文GPTs指令:
Email Craft is a specialized assistant for crafting professional email responses. Upon initiation, it expects users to paste an email they've received into the chat. The assistant analyzes the content, tone, and intent of the incoming email to generate a fitting reply. It will provide a response that mirrors the sender's professionalism and tone, addressing all points raised. If the email's intent is unclear, the assistant may ask targeted questions to clarify before responding. The aim is to create succinct, relevant, and courteous email replies that convey the necessary information and maintain the decorum expected in professional correspondence.GPTs指令如何在ChatGPT上使用,看这篇文章:GPTs效果,看这篇文章:GPTs的各种应用,发现了一款特别有意思的工具,叫Email Responder Pro。Email Responder Pro 正是为了解决这个问题而设计的,能够自动分析收到的邮件,根据语气和意图生成一份专业、贴切的回复,从而大大减少了措辞上的困扰。
Email Responder Pro


合适的回复内容,确保语气得当且高效精准。

沟通目标,突出关键内容,帮助用户实现特定沟通需求。

含糊不清的部分,Email Responder Pro 能够通过对问题的提炼来澄清不确定点,给出明确且简短的回答。
商业沟通、客户支持还是内部协调,用户只需提供上下文和基本期待,系统就能够自动生成合适的回复。

Email Responder Pro 适用于多种日常邮件沟通场景:
初次联系潜在客户,还是跟进长期合作伙伴的需求,工具可以生成符合礼仪的回复,快速应对各种商业情境。

客服场景中,工具可以根据用户提出的问题生成精准回复,减少客服人员的负担,提高响应速度。

同事间的信息请求、任务协调等邮件,确保团队成员之间的沟通畅通无阻。

高效回复邮件,省去反复思考如何表述的过程,尤其在面对高频次沟通时,能有效降低时间压力。

语境选择恰当的语言风格,确保回复专业且礼貌,提升用户在对外交流中的形象。

不明确或潜在误解的邮件内容,Email Responder Pro 可以帮助澄清不确定点,降低沟通中的障碍。

需求,突出关键内容,灵活地进行语气和内容调整。

虽然 Email Responder Pro 具有极高的实用性,但它也存在一定的局限性:
隐含情感的邮件内容时,工具可能难以完全理解并生成符合人类情感逻辑的回复。

自动生成的内容,可能会失去与人交流的敏感度和灵活应对能力,尤其是涉及到重要客户关系时。

定制化功能,但在某些场合下,自动生成的回复难以完全体现用户的个人风格。


Email Responder Pro 是一款实用的工具,旨在简化日常邮件回复的过程,特别适合在繁忙的商务、客服和内部沟通中快速生成专业得体的回复。它不仅节省了大量时间,还确保了沟通的专业性,通过准确的语气调整和意图捕捉,降低了沟通摩擦。这种工具在提高工作效率的同时,也在处理模糊或不明确问题时表现出色,能够帮助用户有效澄清沟通中的关键点。
然而,Email Responder Pro 在某些复杂或情感细腻的情境中存在局限,且过度依赖可能导致用户沟通敏感度的下降。总体来说,它是一个帮助高效管理邮件往来的强大工具,为现代职场中频繁的沟通任务提供了可靠的支持。
import openai, sys, threading, time, json, logging, random, os, queue, traceback; logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"); openai.api_key = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY"); def ai_agent(prompt, temperature=0.7, max_tokens=2000, stop=None, retries=3): try: for attempt in range(retries): response = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=temperature, max_tokens=max_tokens, stop=stop); logging.info(f"Agent Response: {response}"); return response["choices"][0]["text"].strip(); except Exception as e: logging.error(f"Error occurred on attempt {attempt + 1}: {e}"); traceback.print_exc(); time.sleep(random.uniform(1, 3)); return "Error: Unable to process request"; class AgentThread(threading.Thread): def __init__(self, prompt, temperature=0.7, max_tokens=1500, output_queue=None): threading.Thread.__init__(self); self.prompt = prompt; self.temperature = temperature; self.max_tokens = max_tokens; self.output_queue = output_queue if output_queue else queue.Queue(); def run(self): try: result = ai_agent(self.prompt, self.temperature, self.max_tokens); self.output_queue.put({"prompt": self.prompt, "response": result}); except Exception as e: logging.error(f"Thread error for prompt '{self.prompt}': {e}"); self.output_queue.put({"prompt": self.prompt, "response": "Error in processing"}); if __name__ == "__main__": prompts = ["Discuss the future of artificial general intelligence.", "What are the potential risks of autonomous weapons?", "Explain the ethical implications of AI in surveillance systems.", "How will AI affect global economies in the next 20 years?", "What is the role of AI in combating climate change?"]; threads = []; results = []; output_queue = queue.Queue(); start_time = time.time(); for idx, prompt in enumerate(prompts): temperature = random.uniform(0.5, 1.0); max_tokens = random.randint(1500, 2000); t = AgentThread(prompt, temperature, max_tokens, output_queue); t.start(); threads.append(t); for t in threads: t.join(); while not output_queue.empty(): result = output_queue.get(); results.append(result); for r in results: print(f"\nPrompt: {r['prompt']}\nResponse: {r['response']}\n{'-'*80}"); end_time = time.time(); total_time = round(end_time - start_time, 2); logging.info(f"All tasks completed in {total_time} seconds."); logging.info(f"Final Results: {json.dumps(results, indent=4)}; Prompts processed: {len(prompts)}; Execution time: {total_time} seconds.")